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4 Limit of a Function at a Real Number a

4.1 The definition

Definition 4.1.1. A function f has the limit L ∈ R as x approaches a real number a if the
following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(

a − δ0, a
)

∪
(

a, a + δ0

)

.

(II) For each real number ǫ > 0 there exists a real number δ(ǫ) such that 0 < δ(ǫ) ≤ δ0 and

0 < |x − a| < δ(ǫ) ⇒ |f(x) − L| < ǫ.

Remark 4.1.2. Notice that the condition that x belongs to the set
(

a− δ0, a
)

∪
(

a, a + δ
)

can be
expressed in terms of the distance between x and a as: 0 < |x − a| < δ0.

The following figure illustrates Definition 4.1.1.

L

L + ǫ

L − ǫ

a a + δ(ǫ)a − δ(ǫ)

Figure 4:

Next we restate Definition 4.1.1 using the terminology of a calculator screen. The figure
below shows a fictional calculator screen with 35 pixels. We assume that ymin and ymax are
chosen in such a way that the number L is in the middle of the y-range and that xmin and xmax
are such that a is in the middle of the x-range.
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Definition 4.1.3 (Calculator Screen). A
function f has a limit L as x approaches a
if (I) in Definition 4.1.1 is satisfied and

• for each choice of ymin and ymax
there exists ∆ (which depends on ymin
and ymax) such that 0 < ∆ ≤ δ0 and
such that whenever we choose xmin
and xmax such that xmax − xmin <
2∆ the graph of the function f will
appear to be a straight horizontal line
on the calculator screen with the only
possible exception at the pixel contain-
ing x = a.

xmin
a − δ(ǫ)

a xmax
a + δ(ǫ)

ymin

L − ǫ

L
L + ǫ

ymax

?

For the specific fictional calculator screen shown above, the connection between Definition 4.1.1
and Definition 4.1.3 is given by ǫ = (ymax − ymin)/8, xmin = a − δ(ǫ), xmax = a + δ(ǫ) and
δ(ǫ) = ∆.

The fictional screen in the example below is chosen for its simplicity. The screen of TI-92
(see the manual p. 321) is 239 pixels wide and 103 pixels tall; it has 24617 pixels. The screen
of TI-83 (see the manual p. 8-16) and of TI-82 is 95 pixels wide and 63 pixels tall; it has 5985
pixels. The screen of TI-85 (see the manual p. 4-13) is 127 pixels wide and 63 pixels tall; it has
8001 pixels. The screen of TI-89 (see the manual p. 222) is 159 pixels wide and 77 pixels tall; it
has 12243 pixels. Using these numbers you can calculate the connection between ǫ and δ(ǫ) in
Definition 4.1.1 and the screen of your calculator.

4.2 Examples for Definition 4.1.1

Example 4.2.1. Prove lim
x→2

(3x − 1) = 5.

Solution. (I) Here f(x) = 3x − 1. This function is defined on R. We can take any positive
number for δ0. Since it might be useful to have a specific δ0 to work with, we set δ0 = 1.

Let ǫ > 0 be given. Let δ(ǫ) = min{ǫ/3, 1}. Assume 0 < |x − 2| < δ(ǫ). Since δ(ǫ) ≤ ǫ/3, we
conclude that |x − 2| < ǫ/3. Next, we calculate

|(3x − 1) − 5| = |3x − 6| = 3 |x − 2| . (4.2.1)

It follows from the assumption 0 < |x − 2| < δ(ǫ) that |x − 2| < ǫ/3. Therefore we conclude

|(3x − 1) − 5| = 3 |x − 2| < 3
ǫ

3
= ǫ.

Thus we proved that

0 < |x − 2| < δ(ǫ) ⇒ |(3x − 1) − 5| < ǫ.

This is exactly the implication in (II) in Definition 4.1.1. Since ǫ > 0 was arbitrary this completes
the proof.
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Remark 4.2.2. How did I guess the formula for δ(ǫ) in the previous proof? I first studied the
implication in the statement (II) in Definition 4.1.1. The goal in that implication is to prove

|(3x − 1) − 5| < ǫ.

To prove this inequality we need to assume something about |x−2|. To find out what to assume,
I simplified the expression |(3x − 1) − 5| until |x − 2| appeared (see (4.2.1)). Then I solved for
|x−2|. In this process of simplification I can afford to make the right-hand side larger. This will
be illustrated in the next example.

Example 4.2.3. Prove lim
x→2

(3x2 − 2x − 1) = 7.

Solution. As usual, we first deal with (I). Again f(x) = 3x2 − 2x− 1 is defined on R and we can
take any positive number for δ0. Since it might be useful to have a specific choice of δ0, we put
δ0 = 1. (Notice that this implies that, from now on, we consider only in the values of x which
are in the set (1, 2) ∪ (2, 3).)

Next we shall discover an inequality which will help us find a formula for δ(ǫ):

|(3x2 − 2x − 1) − 7| = |3x2 − 2x − 8| = |(3x + 4)(x − 2)| = |3x + 4| |x− 2|.

Now we use the fact that we are considering only the values of x which are in the set (1, 2)∪(2, 3).
For x ∈ (1, 2) ∪ (2, 3) the value of |3x + 4| does not exceed 13. Therefore

|(3x2 − 2x − 1) − 7| ≤ 13 |x − 2| for all x ∈ (1, 2) ∪ (2, 3). (4.2.2)

Let ǫ > 0 be given. The inequality 13 |x − 2| < ǫ is easy to solve for |x − 2|. The solution is
|x − 2| < 3 Now we define δ(ǫ):

δ(ǫ) = min
{ ǫ

13
, 1
}

.

The remaining step of the proof is to prove the implication

|x − 2| < δ(ǫ) ⇒ |(3x2 − 2x − 1) − 7| < ǫ.

I hope that at this point you can prove this implication on your own.

Example 4.2.4. Prove lim
x→2

x3 − x − 4

x − 1
= 2.

Solution. We first deal with (I). Notice that the function f(x) =
x3 − x − 4

x − 1
is defined on R\{1}.

In this proof we are interested in the values of x near a = 2. Therefore, for δ0 we can take any
positive number which is smaller than 1. Since it is useful to have a specific number, we put
δ0 = 1/2. (Notice that this implies that from now on we consider only the values of x which are
in the set (3/2, 2) ∪ (2, 5/2).)

Next we shall discover an inequality which will help us find a formula for δ(ǫ):

∣

∣

∣

∣

x3 − x − 4

x − 1
− 2

∣

∣

∣

∣

=

∣

∣

∣

∣

x3 − 3x − 2

x − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

(x2 + 2x + 1)(x − 2)

x − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

x2 + 2x + 1

x − 1

∣

∣

∣

∣

|x − 2|. (4.2.3)
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Now remember that we are interested only in the values of x which are in the set (3/2, 2)∪(2, 5/2).
For x ∈ (3/2, 2) ∪ (2, 5/2) we estimate

∣

∣

∣

∣

x2 + 2x + 1

x − 1

∣

∣

∣

∣

=
x2 + 2x + 1

x − 1
≤ 16

1/2
= 32 for all x ∈ (3/2, 2) ∪ (2, 5/2). (4.2.4)

Combining (4.2.3) and (4.2.4) we get
∣

∣

∣

∣

x3 − x − 4

x − 1
− 2

∣

∣

∣

∣

≤ 32 |x− 2| for all x ∈ (3/2, 2) ∪ (2, 5/2). (4.2.5)

Let ǫ > 0 be given. The inequality 32 |x−2| < ǫ is very easy to solve for |x−2|. The solution
is |x − 2| < ǫ/32. Now we define δ(ǫ):

δ(ǫ) = min

{

ǫ

32
,
1

2

}

.

The remaining piece of the proof is to prove the implication

|x − 2| < δ(ǫ) ⇒
∣

∣

∣

∣

x3 − x − 4

x − 1
− 2

∣

∣

∣

∣

< ǫ.

I hope that at this point you can prove this on your own. Write down all the details of your
reasoning.

Example 4.2.5. Prove lim
x→4

√
x = 2.

Solution. As usual, we first deal with (I). Notice that the function f(x) =
√

x is defined on
(0, +∞). We are interested in the values of x near the point a = 4. Thus, for δ0 we can take
any positive number which is < 4. Since it is useful to have a specific number, we put δ0 = 1.
(Notice that this implies that from now on in this proof we are interested only in the values of
x which are in the set (3, 4) ∪ (4, 5).)

Next we shall discover an inequality which will help us find a formula for δ(ǫ):

∣

∣

√
x − 2

∣

∣ =

∣

∣

∣

∣

(
√

x − 2)(
√

x + 2)√
x + 2

∣

∣

∣

∣

=

∣

∣

∣

∣

x − 4√
x + 2

∣

∣

∣

∣

=

∣

∣

∣

∣

1√
x + 2

∣

∣

∣

∣

|x − 4|. (4.2.6)

Now remember that we are interested only in the values of x which are in the set (3, 4) ∪ (4, 5).
For x ∈ (3, 4) ∪ (4, 5) we estimate

∣

∣

∣

∣

1√
x + 2

∣

∣

∣

∣

=
1√

x + 2
≤ 1√

3 + 2
≤ 1

2
for all x ∈ (3, 4) ∪ (4, 5). (4.2.7)

Combining (4.2.6) and (4.2.7) we get

∣

∣

√
x − 2

∣

∣ ≤ 1

2
|x − 4| for all x ∈ (3, 4) ∪ (4, 5). (4.2.8)

Let ǫ > 0 be given. The inequality 1
2
|x − 4| < ǫ is easy to solve for |x − 4|. The solution is

|x − 4| < 2ǫ. Now define δ(ǫ):
δ(ǫ) = min {2ǫ, 1} .
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The remaining step of the proof is to prove the implication

|x − 4| < min {2ǫ, 1} ⇒
∣

∣

√
x − 2

∣

∣ < ǫ.

I hope that at this point you can prove this on your own. As before, please do it and write down
the details of your reasoning.

Example 4.2.6. Prove that for any a > 0, lim
x→a

1

x
=

1

a
.

Solution. Let a > 0. As before, we first deal with (I) in Definition 4.1.1. Notice that the function
f(x) = 1/x is defined on R\{1}. We are interested in the values of x near the point a > 0. Thus,
for δ0 we can take any positive number which is < a. Since it is useful to have a specific number,
we put δ0 = a/2. (Notice that this implies that from now on in this proof we are interested only
in the values of x which are in the set (a/2, a) ∪ (a, 3a/2).)

Next we shall discover an inequality which will help us find a formula for δ(ǫ):

∣

∣

∣

∣

1

x
− 1

a

∣

∣

∣

∣

=

∣

∣

∣

∣

a − x

xa

∣

∣

∣

∣

=
|a − x|

xa
=

1

xa
|x − a| . (4.2.9)

Now remember that we are interested only in the values of x which are in the set (a/2, a) ∪
(a, 3a/2). For x ∈ (a/2, a) ∪ (a, 3a/2) we estimate

1

xa
≤ 1

(a/2)a
=

2

a2
for all x ∈ (a/2, a) ∪ (a, 3a/2). (4.2.10)

Combining (4.2.9) and (4.2.10) we get

∣

∣

∣

∣

1

x
− 1

a

∣

∣

∣

∣

≤ 2

a2
|x − a| for all x ∈ (a/2, a) ∪ (a, 3a/2). (4.2.11)

Let ǫ > 0 be given. The inequality 2
a2 |x − a| < ǫ is easy to solve for |x − a|. The solution is

|x − a| < (a2/2)ǫ. Now define δ(ǫ):

δ(ǫ) = min

{

a2

2
ǫ,

a

2

}

.

The remaining step of the proof is to prove the implication

|x − a| < min

{

a2

2
ǫ,

a

2

}

⇒
∣

∣

∣

∣

1

x
− 1

a

∣

∣

∣

∣

< ǫ.

I hope that at this point you can prove this on your own. Write down the details of your
reasoning.

Exercise 4.2.7. Find each of the following limits. Prove your claims using Definition 4.1.1.
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(a) lim
x→3

(2x + 1) (b) lim
x→1

(−3x − 7) (c) lim
x→1

(4x2 + 3)

(d) lim
x→2

x

x − 1
(e) lim

x→3

x2 − x + 2

x + 1
(f) lim

x→0
x1/3

(g) lim
x→0

(

1

|x|

)3/ ln|x|

(h) lim
x→0

tanx (i) lim
x→0

1

cos x

(j) lim
x→3

1

x
(k) lim

x→1

1

x2 + 1
(l) lim

x→−2

x

x2 + 4 x + 3

Exercise 4.2.8. Let f (x) =
x + 1

x2 − 1
. Does f have a limit at a = 1? Justify your answer.

Exercise 4.2.9. Prove that for any a > 0, lim
x→a

√
x =

√
a.

4.3 Infinite limits

Definition 4.3.1. A function f has the limit +∞ as x approaches a real number a if the
following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(

a − δ0, a
)

∪
(

a, a + δ0

)

.

(II) For each real number M > 0 there exists a real number δ(M) such that 0 < δ(M) ≤ δ0

and

0 < |x − a| < δ(ǫ) ⇒ f(x) > M.

Definition 4.3.2. A function f has the limit −∞ as x approaches a real number a if the
following two conditions are satisfied:

(I) There exists a real number δ0 > 0 such that f(x) is defined for each x in the set
(

a − δ0, a
)

∪
(

a, a + δ0

)

.

(II) For each real number M < 0 there exists a real number δ(M) such that 0 < δ(M) ≤ δ0

and

0 < |x − a| < δ(ǫ) ⇒ f(x) < M.

Exercise 4.3.3. Find each of the following limits. Prove your claims using the appropriate
definition.

(a) lim
x→0

1

|x| (b) lim
x→−3

1

(x + 3)2
(c) lim

x→2

x − 3

x(x − 2)2

(d) lim
x→−1

x

(x + 1)4
(e) lim

x→+∞

x2 − x + 2

x + 1
(f) lim

x→+∞

x2 − x

3 − x


