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4 Limit of a Function at a Real Number «

4.1 The definition

Definition 4.1.1. A function f has the limit L € R as = approaches a real number a if the
following two conditions are satisfied:

(I) There exists a real number d, > 0 such that f(z) is defined for each x in the set
(a— 50,a) U (a,a+50).

(IT) For each real number € > 0 there exists a real number (¢) such that 0 < §(e) < Jp and

O<|z—a|l<dle) = |f(zx)—L|<e

Remark 4.1.2. Notice that the condition that x belongs to the set (a — 0o, a) U (a, a—+ 5) can be
expressed in terms of the distance between x and a as: 0 < |z — a| < .

The following figure illustrates Definition 4.1.1.

Figure 4:

Next we restate Definition 4.1.1 using the terminology of a calculator screen. The figure
below shows a fictional calculator screen with 35 pixels. We assume that ymin and ymax are
chosen in such a way that the number L is in the middle of the y-range and that xmin and xrmax
are such that a is in the middle of the z-range.
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Definition 4.1.3 (Calculator Screen). A
function f has a limit L as z approaches a
if (I) in Definition 4.1.1 is satisfied and ymaz]

e for each choice of ymin and ymax

there exists A (which depends on ymin

and ymazx) such that 0 < A < and L—. . . 9 . . .

such that whenever we choose xmin '

and xmax such that zmaxr — xmin <

2A the graph of the function f will

appear to be a straight horizontal line

on the calculator screen with the only , ,

possible exception at the pixel contain- Tmin a rmaz

ing r = a. a— 6(e) a+ ()
For the specific fictional calculator screen shown above, the connection between Definition 4.1.1
and Definition 4.1.3 is given by € = (ymax — ymin)/8, xmin = a — 6(¢), xmax = a + d(¢) and

i(e) = A.

The fictional screen in the example below is chosen for its simplicity. The screen of TI-92
(see the manual p. 321) is 239 pixels wide and 103 pixels tall; it has 24617 pixels. The screen
of TI-83 (see the manual p. 8-16) and of TI-82 is 95 pixels wide and 63 pixels tall; it has 5985
pixels. The screen of TI-85 (see the manual p. 4-13) is 127 pixels wide and 63 pixels tall; it has
8001 pixels. The screen of TI-89 (see the manual p. 222) is 159 pixels wide and 77 pixels tall; it
has 12243 pixels. Using these numbers you can calculate the connection between e and d(¢) in
Definition 4.1.1 and the screen of your calculator.

YMmin-+

4.2 Examples for Definition 4.1.1
Example 4.2.1. Prove lin’; (3x — 1) = 5.

Solution. (I) Here f(x) = 3z — 1. This function is defined on R. We can take any positive
number for dy. Since it might be useful to have a specific dy to work with, we set dy = 1.

Let € > 0 be given. Let d(¢) = min{e/3,1}. Assume 0 < |z — 2| < §(¢). Since d(€) < ¢/3, we
conclude that |z — 2| < €¢/3. Next, we calculate

|(B3x — 1) = 5| =[3z — 6] = 3|z —2|. (4.2.1)
It follows from the assumption 0 < |x — 2| < d(e€) that |z — 2| < ¢/3. Therefore we conclude

|(3x—1)—5|:3|x—2|<3§:e.

Thus we proved that
O0<|z—2<d(e) = |Bxr—1)—-5<e

This is exactly the implication in (II) in Definition 4.1.1. Since € > 0 was arbitrary this completes
the proof. 0
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Remark 4.2.2. How did I guess the formula for §(e) in the previous proof? T first studied the
implication in the statement (II) in Definition 4.1.1. The goal in that implication is to prove

|3z — 1) = 5| <e.

To prove this inequality we need to assume something about |z —2|. To find out what to assume,
I simplified the expression |(3x — 1) — 5| until |x — 2| appeared (see (4.2.1)). Then I solved for
|z —2|. In this process of simplification I can afford to make the right-hand side larger. This will
be illustrated in the next example.

Example 4.2.3. Prove lim (322 -2z —-1)=T.

Solution. As usual, we first deal with (I). Again f(z) = 322 — 2z — 1 is defined on R and we can
take any positive number for dy. Since it might be useful to have a specific choice of g, we put
do = 1. (Notice that this implies that, from now on, we consider only in the values of x which
are in the set (1,2) U (2,3).)

Next we shall discover an inequality which will help us find a formula for §(e):

|(32% — 22 — 1) — 7| = |32° — 22 — 8| = |3z + 4)(x — 2)| = |32 + 4| |z — 2.

Now we use the fact that we are considering only the values of = which are in the set (1,2)U(2, 3).
For = € (1,2) U (2, 3) the value of |3z + 4| does not exceed 13. Therefore

|32 =22 — 1) —7| < 13|z —2| forall ze€(1,2)U(2,3). (4.2.2)

Let € > 0 be given. The inequality 13 |z — 2| < € is easy to solve for |z — 2|. The solution is

|z — 2| < 3 Now we define d(¢):
€

d(e) = min{l—g, 1}.

The remaining step of the proof is to prove the implication
lr —2|<d(e) = |(B2*—22-1)-7|<e

I hope that at this point you can prove this implication on your own. O

3 g4
Example 4.2.4. Prove lir% % =2.
T— T —

3
Solution. We first deal with (I). Notice that the function f(x) = xx—i:cl—ll is defined on R\ {1}.
In this proof we are interested in the values of x near a = 2. Therefore, for §; we can take any
positive number which is smaller than 1. Since it is useful to have a specific number, we put
do = 1/2. (Notice that this implies that from now on we consider only the values of z which are
in the set (3/2,2) U (2,5/2).)

Next we shall discover an inequality which will help us find a formula for §(e):

2 —r—4 2+ 2r+1

r—1

z—2). (4.2.3)

_2‘:

x3—3x—2‘_

z—1

(22 + 22+ 1)(z — 2)
x—1 ‘

r—1
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Now remember that we are interested only in the values of x which are in the set (3/2,2)U(2,5/2).
For = € (3/2,2) U (2,5/2) we estimate

< — =32 forall ze€(3/2,2)U(2,5/2). (4.2.4)
v 1 1/2

Combining (4.2.3) and (4.2.4) we get

r—1

x2+2x+1‘_:c2+23:+1 16

3 —r—4
r—1

- 2‘ <320z —2| forall =€ (3/2,2)U(2,5/2). (4.2.5)

Let € > 0 be given. The inequality 32 |x — 2| < € is very easy to solve for |z — 2|. The solution
is |x — 2| < €¢/32. Now we define J(e):

5(6):mm{3_€2,%}.

The remaining piece of the proof is to prove the implication

2 —x—4

lz —2| <dle) = -2 <e

r—1

I hope that at this point you can prove this on your own. Write down all the details of your
reasoning. O

Example 4.2.5. Prove lirri\/g =2.

Solution. As usual, we first deal with (I). Notice that the function f(z) = /z is defined on
(0, 4+00). We are interested in the values of x near the point a = 4. Thus, for dy we can take
any positive number which is < 4. Since it is useful to have a specific number, we put §; = 1.
(Notice that this implies that from now on in this proof we are interested only in the values of
x which are in the set (3,4) U (4,5).)

Next we shall discover an inequality which will help us find a formula for §(e):

Vel = | = -

Now remember that we are interested only in the values of x which are in the set (3,4) U (4,5).
For z € (3,4) U (4,5) we estimate

lz — 4. (4.2.6)

1 1 1 1
= < < = for all 4 4,5). 4.2.
‘ﬁw‘ Vite S Beg s orel me@AULD) (4.27)
Combining (4.2.6) and (4.2.7) we get
1
|V —2| < §|:17—4| forall z € (3,4)U(4,5). (4.2.8)

Let € > 0 be given. The inequality % |xr — 4| < € is easy to solve for |x — 4|. The solution is
|z — 4] < 2e. Now define 0(¢):
d(e) = min {2¢,1}.
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The remaining step of the proof is to prove the implication
|z — 4] <min{2¢,1} = |Vz-2[<e

I hope that at this point you can prove this on your own. As before, please do it and write down
the details of your reasoning. O

1 1
Example 4.2.6. Prove that for any a > 0, lim — = —
t—aT a

Solution. Let a > 0. As before, we first deal with (I) in Definition 4.1.1. Notice that the function
f(z) = 1/x is defined on R\ {1}. We are interested in the values of x near the point a > 0. Thus,
for 6y we can take any positive number which is < a. Since it is useful to have a specific number,
we put dgp = a/2. (Notice that this implies that from now on in this proof we are interested only
in the values of z which are in the set (a/2,a) U (a,3a/2).)

Next we shall discover an inequality which will help us find a formula for §(e):

1 1

T a

a—x

— 1
I (4.2.9)
xra xra

xa

Now remember that we are interested only in the values of x which are in the set (a/2,a) U
(a,3a/2). For x € (a/2,a) U (a,3a/2) we estimate

1 1 2
o < @/ Da == for all z € (a/2,a) U (a,3a/2). (4.2.10)

Combining (4.2.9) and (4.2.10) we get

1 1

i a

2
< = |z —a| forall x€ (a/2,a)U (a,3a/2). (4.2.11)

Let € > 0 be given. The inequality = |z — a| < € is easy to solve for |z — a|. The solution is
|z — a| < (a®/2)e. Now define d(e):

The remaining step of the proof is to prove the implication

|z — a| < min L
T — ing—e€ -
2 72

I hope that at this point you can prove this on your own. Write down the details of your
reasoning. ]

1 1

i a

Exercise 4.2.7. Find each of the following limits. Prove your claims using Definition 4.1.1.
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(a) lir% (2x +1) (b) lin% (—=3xz—17) (c) lin} (422 4 3)
T 22—z +2 1
. zoooo vy . /3
() lim (¢) lim ——— (f) Lo
1 3/ In|z|
® i (o) W) lim tan 0 tm
: 1 . 1 , x
() 91612% x (k) o1 72 +1 ) mlin% 2 +4x+3
. r+1 . :
Exercise 4.2.8. Let f(z) = — T Does f have a limit at a = 17 Justify your answer.
x p—

Exercise 4.2.9. Prove that for any a > 0, lim /z = \/a.

4.3 Infinite limits

Definition 4.3.1. A function f has the limit +o0c as x approaches a real number a if the
following two conditions are satisfied:

(I) There exists a real number d, > 0 such that f(z) is defined for each x in the set
(a— 50,a) U (a,a+50).

(IT) For each real number M > 0 there exists a real number §(M) such that 0 < (M) < &g
and

O0<l|r—a|<dle) = f(z)>M.

Definition 4.3.2. A function f has the limit —oo as = approaches a real number a if the
following two conditions are satisfied:

(I) There exists a real number &, > 0 such that f(x) is defined for each z in the set
(a— 50,a) U (a,a+50).

(IT) For each real number M < 0 there exists a real number §(M) such that 0 < (M) < &g
and

O<|z—a|l<dle) = flz)<M.

Exercise 4.3.3. Find each of the following limits. Prove your claims using the appropriate
definition.

.1 ) 1 . T —3
(a)  lim o (b) Jlim ~ 5 (c) Ml oy
x 22—z +2 2 —x

(d) (e) lim —— (f)  lim

lim ——
min—ll (x+1)4 z—+o00 x+1 400 3 — T



